Browse Technologies by  


UPN Ref Technology
54 Elastic fast swelling hydrogel
A fast responsive superporous hydrogel technology. The crosslinking is maintained by hydrolyzable diacrylate polymer and vinyl modified polypeptide. As these crosslinks break down, the material will start to fall apart and shrink. In addition, this superporous hydrogel is elastic (mechanically resilient) as it can be stretched more than 100% of its original size.
View Technology
39 Inorganic and organic nanofibrous materials
Novel nanofibrous materials have been developed such as ceramic nanofibers and organic nanofibers that have a plurality of applications.
View Technology
38 Nanopore technology platform
A nanopore technology platform that enables high-throughput measurements of particles as they passes through a pore. The highly precise analytical nanotechnology uses tunable nanopore-based measurement to rapidly determine the size, charge and concentration of particle populations with individual particle resolution.
View Technology
23 Making adhesives surfaces reversible
Thermo-expandable microspheres (TEMs), which consist of an outer shell of copolymer thermoplastic resin encapsulating a liquid hydrocarbon, when the heat trigger is applied at command the microspheres expand to over 100 times their volume, acting as a pressure activator to cleanly break the bond at the interface, and the cohesive structure. A key part of the patented technology is the functionalization of the TEMs surfaces, e.i. a conducting material is applied onto the polymeric shells of the microspheres. This additional layer enables quicker ways to get the heat to the TEM surface without damaging the material itself.
View Technology
5 New method of encapsulation
Metal oxide micelles modified with organic ligands on the surface have been prepared. The ligands applied in sol-gel synthesis of inorganic materials are hydrophobic ones such as carboxylate or phosphonate groups. Positively charged micelles are attracted to the negatively charged cell membrane surface, are discharged and coalesce to form a continuous shell. This unique bioencapsulation method covers also the approaches for chemically or biochemically controlled release of the bioactive components, tissues or organisms from said particles.
View Technology
slider